Abstract

We ask whether players of a classical game can partition a pure quantum state to implement classical correlated equilibrium distributions. The main contribution of this work is an impossibility result: we provide an example of a classical correlated equilibrium that cannot be securely implemented without useful information leaking outside the system. We study the model where players of a classical complete information game initially share an entangled pure quantum state. Players may perform arbitrary local operations on their subsystems, but no direct communication (either quantum or classical) is allowed. We explain why, for the purpose of implementing classical correlated equilibria, it is desirable to restrict the initial state to be pure and to restrict communication. In this framework, we define the concept of quantum correlated equilibrium (QCE) and show that in a normal form game, any outcome distribution implementable by a QCE can also be implemented by a classical correlated equilibrium (CE), but that the converse is false. We extend our analysis to extensive form games, and compare the power of QCE to extensive form classical correlated equilibria (EFCE) and immediate-revelation extensive form correlated equilibria (IR-EFCE).

1 Introduction

Since the work of Aumann [1], the concept of correlated equilibrium (CE) has played an important role in the study of games. Correlated equilibria always exist, and unlike Nash equilibria, which are believed to be computationally intractable [5], a correlated equilibrium can be computed efficiently in a broad class of succinctly-representable games [21]. In a correlated equilibrium, a trusted correlating device selects strategies from a joint probability distribution and privately sends a recommended move to each player. Each player maximizes his expected utility by following his recommendation. The question of how to implement a correlated equilibrium without a trusted third party has recently attracted the attention of the cryptographic community. For example, it has been studied (see [6], [14], [15], [17], [22]) how to use cryptographic protocols to replace the trusted mediator with multiple rounds of interaction between players.

In this paper, we study the scenario where instead of having access to a mediator or the ability to perform cryptographic protocols via rounds of communication, the players of a classical complete information game initially share an entangled pure quantum state. Each player may perform arbitrary local operations on his own partition (by using the state as input to an arbitrary quantum circuit) in order to determine which move to play, but no direct communication, either quantum or classical, is allowed. Assuming that players have access to a partition of an appropriate pure quantum state,
we do not need any direct interaction between the players or any communication with a trusted mediator.1 In Section 4, we discuss why we believe our model to be a correct framework for studying quantum implementations of classical correlated equilibria.

In our framework, we define the concept of quantum correlated equilibrium (QCE) for both normal and extensive form games of complete information. We show that in a normal form game, any outcome distribution implementable by a QCE can also be implemented by a classical CE. We prove that the converse is false: we give an example of an outcome distribution of a normal form game which is implementable by a CE, yet we prove that in any attempted quantum protocol achieving this distribution, at least one of the players will have incentive to deviate.

We extend our analysis to extensive form games, and find that the relation between classical and quantum correlated equilibria becomes less clear. We compare the outcome distributions implementable in our quantum model to those implementable by a classical extensive form correlated equilibrium (EFCE) (see von Stengel and Forges [23]).2 For example, we show that there exists an extensive form complete information game and a distribution of outcomes which can be implemented by a QCE but not by any EFCE, in contrast to the result for normal form games. We also consider the concept of an immediate-revelation extensive form correlated equilibrium (IR-EFCE) (motivated by discussion in Forges [7]) and compare the power of IR-EFCE to EFCE and to QCE.

1.1 Interpreting the Impossibility Result in a Classical Context

We believe that our model of partitioning a pure quantum state is a natural formalization of physical correlated equilibrium implementations which are unentangled with the outside world. (See Section 4.) We can interpret our impossibility result in this general context. The result states that, in any attempted physical implementation of certain CE outcome distributions, either a) at least one player will be able to improve his utility by performing some (perhaps very complicated) physical measurements on his own subsystem, or b) the physical system must be entangled with the outside world in such a way that, if a player has the ability to perform appropriate measurements to the outside world, he would be able to improve his utility.3 To avoid having important information freely available in the outside world, it is desirable to have a secure location to store the appropriate components of the outside world that are entangled with the system. The need to hide this information from the players is analogous to needing a trusted third party to keep hidden information out of reach of the players.

Our requirement that the system be unentangled with the outside world is very strict, but we believe it to be the appropriate formalism. We wish, for example, that no player (regardless how precise his measuring equipment) can examine the state-constructing machine to gain any additional information about a recently constructed state. That requirement that no useful information leak outside the quantum system is very strong, and most classical physical CE implementations fail to meet our strict requirements. Nevertheless, we believe that it is best to impose this harsh restriction of “no information leakage” in our model of secure state construction, since there is no reasonable way of formally characterizing which outside information is accessible and which is, for all practical

1We address the issues of securely constructing the state in Section 4. We resolve many of the game theoretic issues of initial state construction by restricting the state to be pure.

2Since we are only concerned with games of complete information, we can avoid many of the technicalities from [8] and [23].

3We are implicitly using a principle of deferred measurement to view physical implementations as consisting solely of preparing a system, partitioning the system among the players, and finally performing measurements in isolation from the other players. In such an implementation, no intermediate measurements impact how the players prepare the system. The “system” viewed in this way can be very large. For example, we view the prepared system as being entangled with anything a player uses as a source of “randomness” during the preparation.
purposes, “lost.” We address the issues of securely constructing quantum states in Section 4. At the very least, pure state construction has a desirable property of auditability: We can give any player access to the state-constructing machine to verify that the state was corrected properly, and we need not worry that the player can gain any additional useful information by his inspection.

1.2 Related Work

While work by Clauser et al [3], Cleve et al [4] and La Mura [16] have studied how quantum entanglement can aid in games of incomplete information (such as Bayesian games), we restrict our attention to games of complete information, and find that even in this framework the questions are nontrivial. Quantum solutions of classical coordination games have been studied previously, such as in Cleve et al [4] and Huberman et al [12]. In this paper, we look at games which have both cooperative and competitive components. Instead of analyzing the “quantization” of games (see Meyer [20]), our underlying games remain purely classical. Entanglement is used only as a device to aid in a player’s decision of which strategy to play in the classical game. By keeping the underlying game classical, our model generalizes more naturally from normal form to extensive form games.

Since our goal is to study a mediator-free setting, it is necessary to restrict our model so that the initial shared state be pure (See Section 4). This restriction is very significant and differs from work such as Zhang’s [24] which, while studying both pure and mixed initial states, limited its mention of pure states to those with a certain restricted form. Furthermore, unlike La Mura’s model [16], in our definition of equilibrium we do not restrict the local operations that a player might potentially perform to his own qubits.

Meyer ([18], [19]) analyzed the concept of mediated quantum communication in games. In his model, a mediator prepares a (possibly mixed) quantum state and sends each player of a normal form game an appropriate subsystem of the state. After performing any desired quantum operations to their states, the players return their subsystems to the mediator, who performs a final unitary transformation on the system before measuring in a standard basis. Since the motivation of our work is to remove the mediator, our model does not allow for this final unitary transformation to be made to the entire system, reducing the power of our model for normal form games. Furthermore, our framework only allows for pure states, but our states might be over a much larger number of qubits than in Meyer’s work. (Since Meyer [19] allows for both pure or mixed states, its attention is restricted to smaller states, and does not explicitly analyze the effect of ancillary qubits in larger pure states.) Finally, since our model requires the players to make their own measurements (instead of returning their subsystems to a mediator), our model generalizes more easily to extensive form games.

2 Classical Correlated Equilibria

We briefly discuss the concept of correlated equilibrium in classical complete information games, and elaborate on this concept in Appendix A. For a more thorough discussion, see [1], [8], or [23].

2.1 Normal Form Games

Correlated equilibrium (CE) in normal form games was first introduced by Aumann [1]. In a correlated equilibrium of a normal form game, a trusted correlating device selects an outcome of the game according to some known probability distribution, and privately suggests to each player the

4Roughly speaking, the main difference is that we allow for pure states with many ancillary qubits, and these ancillary qubits can indeed affect the players’ ability to gain utility by deviating.
appropriate action to achieve this outcome. The resulting play is a CE if each player can maximize his expected utility by always following his recommendation, given that all other players follow their recommendations. See Appendix A for further discussion and an example, or see [1] for formal definitions.

2.2 Extensive Form Games

We informally present the concept of classical correlated equilibrium in extensive form games of complete (but imperfect) information, following [23]. A more thorough discussion can be found in [8] and [23]. Note that there are several different ways of defining correlated equilibria in extensive form games, and in this section we present two such versions.

An extensive form game G has a finite set of players, n. The game is represented as a rooted directed tree, where the non-terminal nodes are partitioned into information sets. Each information set belongs to a single player.\footnote{Throughout this paper we will assume that the game has the perfect recall property.} A pure strategy for player i selects a single outgoing edge from every information set belonging to i. Denote the set of pure strategies available to player i by Σ_i.

A correlating device μ is a distribution over $\prod_{i \in n} \Sigma_i$. Consider the following procedure:

- A trusted mediator draws a strategy profile $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ according to the correlating device μ.
- The players begin playing the game G. As the gameplay enters each information set, the mediator tells the set’s owner i the recommended move according to π_i.

Following [23], we say that $C = (G, \mu)$ is an extensive form correlated equilibrium (EFCE) if, for every player i, given that all other players follow their recommended move, player i’s expected utility is maximized by always following his recommendation.\footnote{We do not impose any requirement of subgame perfection in our equilibrium definition.}

In the above protocol, the strategy profile π defines a suggested move at every information set. This recommendation is revealed only to the set’s owner, and is only revealed when he reaches the set. In addition to the definition from [23], we give an alternate definition of extensive form correlated equilibrium (briefly mentioned in [7]), which we will call immediate-revelation extensive form correlated equilibrium (IR-EFCE) defined analogously to that above except that player i learns his entire strategy recommendation π_i before gameplay begins. We compare the various classical correlated equilibrium concepts in Appendix B.

3 Quantum Correlated Equilibria in Normal Form Games

In this section we discuss the concept of a quantum correlated equilibrium (QCE) in normal form games. We explain the motivation behind our definition in Section 4.

Definition 1. Let G be a normal form game with n players. For each player i, let A_i be the set of actions available to player i in G. Consider a 3-tuple $(|\psi\rangle, \Gamma, Q)$ where

- $|\psi\rangle$ is pure quantum state.
- Γ is a partition of the qubits of $|\psi\rangle$ into n disjoint sets q_1, q_2, \ldots, q_n.
- $Q = (Q_1, \ldots, Q_n)$ is a collection of n quantum circuits, where circuit Q_i takes as input the qubits q_i (as well as auxiliary $|0\rangle$ qubits) and outputs an action $a_i \in A_i$.

\[5\] Throughout this paper we will assume that the game has the perfect recall property.

\[6\] We do not impose any requirement of subgame perfection in our equilibrium definition.

4
Given such a 3-tuple, we denote $D(\ket{\psi}, \Gamma, Q)$ as the distribution resulting over outcomes of G when each player i applies Q_i to his qubits of $\ket{\psi}$ and plays the result, and let $u_i(D)$ be the expected utility for player i in the outcome distribution D.

We say that $(\ket{\psi}, \Gamma, Q)$ is a quantum correlated equilibrium (QCE) if, for all players i and for all quantum circuits Q_i',

$$u_i(D(\ket{\psi}, \Gamma, Q)) \geq u_i\left(D\left(\ket{\psi}, \Gamma, (Q_1, \ldots, Q_{i-1}, Q'_i, Q_{i+1}, \ldots, Q_n)\right)\right).$$

In a quantum correlated equilibrium, each player can maximize his expected utility by using his prescribed quantum circuit on his qubits and playing the result, given that all other players follow the output of their circuits. In our definition, $\ket{\psi}$ must be a pure quantum state. We believe that restricting $\ket{\psi}$ to be pure is a necessary restriction. In particular, since our goal is to have a mediator-free setting, allowing for a mixed state would create a fundamental difficulty of how to construct the initial state in a secure manner: we could create a mixed state either by using a restriction of a larger pure state (in which case we have the difficulty of what to do with the remaining particles), or we could use a classical coin-flipping mechanism to determine which pure state to construct (in which case we have the difficulty of who knows the result of the coin flip). We discuss this issue in much greater detail in Section 4.

It is a standard result from quantum computation that, given any quantum circuit Q, there exists an equivalent quantum circuit Q'_i which performs all measurements at the very end of the computation.\footnote{This is sometimes known as the “principle of deferred measurement.”} Let $(\ket{\psi}, \Gamma, Q)$ be a QCE of a normal form game. We can assume without loss of generality that every quantum circuit (Q_1, \ldots, Q_n) performs all of its measurements at the end of the circuit’s computation. Consider the state $\ket{\psi'}$ which results immediately before any circuit performs a measurement but after all unitary operations have taken place. (The final state does not depend on the particular order in which the circuits act, since each circuit acts on separate qubits.) We can assume without loss of generality that the action $a_i \in A_i$ output by Q_i is obtained by measuring the first $\log_2 |A_i|$ bits of player’s i partition of $\ket{\psi'}$ in the standard basis (where we have a canonical mapping between $\log_2 |A_i|$-bit binary strings and elements of A_i.)

Definition 2. Let G be a normal form game with n players. Let $\ket{\psi}$ be a pure quantum state, and let Γ be a partition of the qubits of $\ket{\psi}$ into n sets q_1, \ldots, q_n. For each player i, let A_i be the set of actions available to player i in G, and fix some mapping between binary strings of length $\log_2 |A_i|$ and elements of A_i. Let $M_i : q_i \rightarrow A_i$ be the circuit which measures the first $\log_2 |A_i|$ qubits of q_i in the standard basis and outputs the resulting action in A_i (using the fixed mapping between strings and actions). If $(\ket{\psi}, \Gamma, (M_1, \ldots, M_n))$ is a QCE, we call $(\ket{\psi}, \Gamma, (M_1, \ldots, M_n))$ a canonical implementation QCE.

From the above discussion, we know that any QCE in a normal form game has an equivalent canonical implementation, by letting $\ket{\psi'}$ be the quantum state which occurs immediately before any measurements occur and after all unitary operations are performed.

Lemma 1. Let G be a normal form game, and let $(\ket{\psi}, \Gamma, Q)$ be a QCE. Then there exists a canonical implementation $QCE (\ket{\psi'}, \Gamma', (M_1, \ldots, M_n))$ such that

$$D(\ket{\psi}, \Gamma, Q) = D(\ket{\psi'}, \Gamma', (M_1, \ldots, M_n)).$$

Since every QCE in a normal form game has an equivalent canonical implementation QCE, it follows that any outcome distribution of a QCE in a normal form game can be achieved by a classical correlated equilibrium of the same game. (This result is similar to Theorem 2 from Meyer [19] and
Theorem 3.1 from Zhang [24]. We will see later that the analogous result is false for extensive form games.

Proposition 1. Let G be a normal form game, and let $(|\psi\rangle, \Gamma, Q)$ be a quantum correlated equilibrium of G. Then there exists a classical correlated equilibrium of G which induces the same outcome distribution $D(|\psi\rangle, \Gamma, Q)$.

Proof. By Lemma 1, there exists a canonical implementation QCE $(|\psi'\rangle, \Gamma', (M_1, \ldots, M_n))$ which induces the output distribution $D(|\psi\rangle, \Gamma, Q)$. Let P be the probability distribution on binary strings resulting from measuring all of the qubits of $|\psi'\rangle$ in the standard basis, and consider the classical correlating device which chooses a binary string according to P and tells each player the move suggestion corresponding to the first $\log_2 |A_i|$ bits of his partition of this binary string. If each player indeed follows the advice, it obviously induces the outcome distribution $D(|\psi\rangle, \Gamma, Q)$. Furthermore, each player can maximize his utility by following his advice: If on the contrary player i could improve his expected utility by not following his suggested move in this classical setting, then we could design a quantum circuit Q_i for i which improves his utility over $u_i(D(|\psi\rangle, \Gamma, Q))$ by deviating in a similar way, thereby violating the assumption that $(|\psi\rangle, \Gamma, Q)$ is a QCE.

As a simple example of a QCE (similar to an example from [12]), consider the normal form game in Figure 1. The outcome distribution $\frac{1}{2}(TR + BL)$ is achievable by a classical correlated equilibrium. Furthermore, we can achieve this outcome distribution in a QCE by using the entangled state $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle + |1\rangle |0\rangle)$ in a canonical QCE representation. In this QCE, the first player measures the first qubit of the pair to determine his move, and the other player measures the second qubit. It is obvious that no player can improve his utility by using a different quantum circuit to manipulate his qubit, since in this outcome distribution each player is always best-responding to the other player’s action.

$$
\begin{array}{ccc}
T & L & R \\
0,0 & 1,5 \\
B & 5,1 & 0,0
\end{array}
$$

Figure 1: The distribution $\frac{1}{2}(TR + BL)$ has a canonical QCE with state $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle + |1\rangle |0\rangle)$.

We now ask whether the converse of Proposition 1 is true. Consider the game in Figure 2. It is easy to check that $\frac{1}{3}(TR + BL + BR)$ is the outcome of a classical correlated equilibrium. To implement this distribution, we might try having the players share the entangled state $\frac{1}{\sqrt{3}}(|0\rangle |1\rangle + |1\rangle |0\rangle + |1\rangle |1\rangle)$ (where the first qubit belongs to the row player, and the second qubit belongs to the column player) and instructing each player to measure his qubit in the standard basis to determine his action. However, this is not a QCE. For example, the row player can apply a Hadamard transformation to his qubit, resulting in the entangled state

$$
\frac{2}{\sqrt{6}} |01\rangle + \frac{1}{\sqrt{6}} |00\rangle - \frac{1}{\sqrt{6}} |10\rangle
$$

before the measurements. Given that the column player indeed obeys the protocol and simply measures in the standard basis, the resulting outcome distribution is $\frac{2}{3}TR + \frac{1}{6}TL + \frac{1}{6}BL$, which increases

8We assume a canonical mapping between binary values and moves in the game, where a measurement value of “0” in the first qubit corresponds to the move “T”, etc.
the expected utility for the row player. Since the row player can use a Hadamard transformation to increase his expected utility, the state $\frac{1}{\sqrt{3}}(|01\rangle + |10\rangle + |11\rangle)$ does not form a canonical QCE implementation of the outcome distribution $\frac{1}{3}(TR + BL + BR)$.

$$
\begin{array}{c|cc}
 & L & R \\
\hline
T & 0,0 & 6,6 \\
B & 6,6 & 0,0
\end{array}
$$

Figure 2: The CE outcome distribution $\frac{1}{3}(TR + BL + BR)$ cannot be implemented by any QCE. See Appendix C for a proof of this result.

While the obvious QCE implementation attempt failed, we could conceivably try to design a more complicated QCE protocol achieving this outcome distribution. In the most technical result of this paper, we prove that there is in fact no QCE achieving this outcome distribution, and thus classical CE is a strictly more powerful concept than QCE in normal form games. The full proof of this result is in Appendix C. The argument is by contradiction. We suppose on the contrary that there is a state $|\psi\rangle$ which can be used to implement the distribution in a canonical implementation QCE. Given that a player cannot improve his utility by deviating, we can obtain a set of constraints that the density matrices for this player’s subsystem must satisfy, conditional on the other player’s measurement result. We obtain analogous constraints for the other player’s subsystems. Finally, we show that no pure state $|\psi\rangle$ can divide into appropriate subsystems satisfying all of these constraints simultaneously.

Theorem 1. There exists a normal form game G and a classical correlated equilibrium distribution of G such that the distribution cannot be achieved by any QCE.

4 The Framework of Quantum CE Implementations

It is desirable for a model of correlated equilibrium implementations to introduce no additional communication between the players, or at least to limit additional communication as much as possible. If we were to open additional communication channels (either classical or quantum), we might drastically affect the overall strategic nature of the game. While our initial view of CE “implementation” in this paper is fairly weak (namely matching a desired distribution in a single equilibrium), any strengthening of this concept (as discussed in Section 6.1) seems to become incredibly difficult if we introduce additional communication. Therefore, it is desirable to use a model where players initially share a quantum state and have no further direct interactions beyond those specified by the classical game itself.

In our definition of QCE, the players initially share a pure quantum state $|\psi\rangle$. We do not allow for the players to initially share a mixed state (which would make the converse of Proposition 1 obviously true), since the use of mixed states hides information and affects properties such as collusion-resilience. For example, suppose that to implement the distribution $\frac{1}{3}(TR + BL + BR)$ in Figure 2, we allowed

9While in this example the column player’s utility also increases when the row player deviates, if we consider changing the payoff of TL to be $(0, -20)$, then the column player suffers significant losses when the row player deviates in this proposed implementation.

10There are examples for which the “obvious” approach of achieving a desired distribution fails, but sharing a larger quantum state achieves the distribution in QCE. For example, if we were to change the column player’s payoff to always be 0 in the game from Figure 2, we could achieve the $\frac{1}{3}(TR + BL + BR)$ outcome distribution by using an initial 3-qubit shared state, where the last 2 qubits belong to the column player.
the players to share the mixed state \(\rho \) which was \(|01\rangle\) with probability 1/3, \(|10\rangle\) with probability 1/3, and \(|11\rangle\) with probability 1/3. The access to such a mixed state obviously allows the players to achieve the desired outcome distribution (by measuring in the standard basis), and it is furthermore obvious that no player can improve his utility by deviating: Our mixed state has only classical uncertainty of which state the players share, and therefore the players cannot take advantage of quantum interference effects.

4.1 Constructing Mixed States

The difficulty comes when we ask how the players obtain the mixed state \(\rho \). One method is to begin with the state

\[
|\psi\rangle = \frac{1}{\sqrt{3}} (|0\rangle |1\rangle |00\rangle + |1\rangle |0\rangle |01\rangle + |1\rangle |1\rangle |10\rangle)
\]

and to give the first qubit from \(|\psi\rangle \) to player 1 and the second qubit to player 2. The complication is what we do with the remaining two qubits. If we were to give these qubits to either player 1 or player 2, the player could measure the qubits to deduce the other player's advice, and therefore has the opportunity to deviate and improve his utility. An implementation which relied on this construction of the mixed state \(\rho \) would therefore be undesirable in that, if either player managed to get access to the missing two qubits of the purification, he might be able to improve his utility by deviating.

The other way to create the mixed state \(\rho \) is to flip a classical three-sided coin and, depending on the result of the flip, to construct the pure state \(|01\rangle\), \(|10\rangle\), or \(|11\rangle\). The difficulty with this approach is the question of who flips the coin. If either player of the game were to flip the coin, this player would know the resulting state with certainty, and therefore might have incentive to deviate. Even if we designed a machine to flip a coin and to apply the Hamiltonian, information about the result of the flip would later be theoretically measurable if a player gained access to the machine itself, due to entanglement between the particles and the machine. It appears that there is no way to securely construct \(\rho \) without information leaking outside the system.\(^{11}\)

One way to solve this problem is to introduce a third player to the game, to give this player only a single possible action \(O \) in \(G \), and to give him utility 0 in all outcomes of the game. Classically, this three-player game inherits much of the equilibrium structure of the original game, since the third player has no choice in his action. Furthermore, we can indeed achieve the outcome distribution

\[
\frac{1}{3} (TRO + BLO + BRO)
\]

by a QCE in this three-player game by using the state \(|\psi\rangle \) from above and giving the last two qubits to the third player.\(^{12}\)

From a mechanism design point of view, however, the QCE in the three-player game is very different from the classical CE implementation in the two-player game. In particular, the addition of the third player makes the quantum implementation vulnerable to collusion (since either player 1 or player 2 could improve his utility by colluding with player 3) while the two-player classical implementation does not have this vulnerability. Since we do not want to introduce unnecessary collusive vulnerabilities into our implementation, we find this construction of adding an additional player to the game unsatisfactory. Indeed, our main motivation for introducing QCE was to avoid the necessity of a trusted third party, and allowing for mixed states reintroduces this difficulty.

\(^{11}\)We are indeed asking for an incredibly strong notion of robustness against information leakage, and most classical physical implementation attempts fail to meet our criteria.

\(^{12}\)This construction works in general: given any classical CE outcome distribution of a normal form game \(G \), we can construct a game \(G' \) which has one additional player (where this new player only has a single action, and receives utility 0 regardless of the outcome) such that we can implement the corresponding outcome distribution in \(G' \) by a QCE.
4.2 Constructing Pure States

The underlying difficulty of using mixed states is that, in their construction, information leaks outside of the system. If a player were to gain access to this information, then he might use this knowledge to improve his utility. By using only pure states, we can avoid much of this difficulty of information leakage.

Nevertheless, some issues remain in pure state construction, although we believe these difficulties to be less severe. In order to create an entangled state, the particles must be in close proximity at some point in time, and someone must apply an appropriate Hamiltonian. For example, we can imagine Alice and Bob meeting to construct an EPR pair. While Bob watches, Alice publicly measures two qubits (to demonstrate their initial state) and then presses a button to apply the appropriate Hamiltonian. After Alice and Bob each take possession of their particle, they are free to analyze and perform any desired measurements on the machine or on the surrounding area. The key difference between this procedure and the proposed processes for creating mixed states is auditability: if Alice applied an incorrect Hamiltonian or if the machine were faulty, Bob would in theory be able to detect the deviation. Since the constructed state is pure, neither Alice nor Bob can gather additional information about the state by inspecting the machine. At some time in the distant future, if Alice and Bob want to play a game, they would have access to a partition of an EPR pair which they may use in a QCE.

5 QCE in Extensive Form Games

We define a quantum correlated equilibrium in perfect-recall extensive form games analogously to our definition for normal form games. In a QCE, the qubits of a pure quantum state are partitioned and given to the players before the start of the game. A QCE consists of a quantum circuit for each information set. When an information set is reached during the game, the information set’s owner uses all qubits in his possession 13 as input to the appropriate circuit to determine his next action 14: a player’s output state from one information set is used as his input state when he reaches the next information set. The choice of action a player applies to his own quantum state is private and unknown to the other players. In a QCE, no player can improve his expected utility by changing any number of the circuits on his own information sets.

In our definition, the players share the entangled state $|\psi\rangle$ at the start of the game and do not gain access to any additional entangled qubits as play progresses. This framework is analogous to a classical IR-EFCE. We believe that our definition is the most natural, since it avoids the necessity of a mechanism to distribute new entangled states in later information sets.

We show in Appendix B the simple fact that every IR-EFCE in an extensive form game G has a corresponding classical CE in the normal form equivalent game (denoted $n(G)$). Furthermore, Proposition 1 states that every QCE of $n(G)$ has an equivalent classical CE in $n(G)$. Nevertheless, it is possible that G has outcome distributions which can be achieved by a QCE but which cannot be achieved by any classical IR-EFCE (or EFCE).

The underlying reason why quantum correlated equilibrium can be more powerful in an extensive form game G than in $n(G)$ is the measurement principle of quantum mechanics. In particular, an action in $n(G)$ specifies a choice of action for every information set of G, even those information sets which are not reached in the actual execution. To specify our actions in all of these information sets for the game $n(G)$, we would need to operate on $|\psi\rangle$ many times to determine what we would

13Players have access to an arbitrarily large supply of ancillary $|0\rangle$ qubits.
14We now care not only about the action output by the circuit, but also about the resulting quantum state, since the player will use this state in later information sets.
hypothetically do in all of these unreached information sets. In the extensive form game, a player only operates on $|\psi\rangle$ when his information set is actually reached.15

The main goal of this section is to compare the power of EFCE, IR-EFCE, and extensive form QCE. To this end, we will provide several examples of outcome distributions of particular games which can be obtained by some of the equilibrium concepts but not by others. We summarize these results in Figure 4. It remains further work to obtain a more thorough set of criteria for determining when a distribution can be achieved by the various equilibrium concepts.

5.1 The Complete-Information GHZ Game

The analog of Proposition 1 is false for extensive form games. In particular, we have the following result.

Theorem 2. There exists a complete information extensive form game G and an outcome distribution of the game which can be achieved by a QCE but not by any EFCE (or by any IR-EFCE).

We present a full proof of this theorem in Appendix D. The game that we use is a slight modification of the GHZ game from [9]. The GHZ game is a well-known example of a scenario where players can achieve higher utility in a quantum setting than they can achieve classically. While the GHZ game is a three-player game of incomplete information, we construct a “complete-information GHZ game” (denoted cGHZ) by introducing a fourth player, who we incentivize to act as “nature.” An “always succeed” outcome distribution (where the original three players always receive maximum payoff and the nature player receives minimum payoff) can be achieved in a QCE but not in any EFCE or IR-EFCE.

By combining Proposition 1 and Theorem 2 we obtain the immediate corollary that extensive form QCE is a more powerful concept than normal form QCE.

Corollary 1. There exists extensive-form game G and an outcome distribution of the game which can be achieved by a QCE, yet the corresponding outcome distribution in the normal form equivalent game $n(G)$ cannot be achieved by any QCE.

5.2 Limits of QCE in Extensive Form Games

While in some extensive form games QCE can be a more powerful solution concept than classical EFCE, there are other games where outcome distributions can be achieved by EFCE but cannot be implemented by any extensive form QCE. Consider the game in Figure 3. As discussed in Appendix B, the outcome distribution $1/2(IN,a,L) + 1/2(IN,b,R)$ can be achieved by an EFCE but not by any IR-EFCE. For a nearly identical reason, this distribution cannot be achieved by any extensive form QCE.

Suppose on the contrary that there were some QCE achieving the outcome distribution $1/2(IN,a,L)+1/2(IN,b,R)$. We notice that, at the beginning of the game, player 1 could simulate the quantum circuit for his second information set to compute whether, if he were to play IN, his next advice would be a or b. If he computes that his next advice would be b, then he can improve his utility by deviating and playing OUT.

The underlying reason why the outcome distribution discussed above cannot be implemented by a QCE is that, in a QCE, a player has the ability to apply his circuits early, and can thereby compute what his advice would be if he were to reach certain later information sets in the future. Since in this

15Because the operations performed to $|\psi\rangle$ depend on the information sets visited during execution of the game, we do not have a concept analogous to a “canonical implementation” of an extensive form QCE.
example player 1 would have no further need of his qubits if he were to play OUT (since the game would end immediately), there is no penalty for him to discover what his future advice will be. We have therefore proven the following theorem:

Theorem 3. There exists an extensive form game G and an outcome distribution of the game which can be achieved by an EFCE but not by any QCE or by any IR-EFCE.

While the above theorem states that in some games the EFCE concept can be more powerful than both QCE and IR-EFCE, it also can be the case that some distributions can be implemented by both an EFCE and by a QCE but not by any IR-EFCE. By combining aspects of the game from Figure 3 with complete-information GHZ game, we have the following result, which we prove in Appendix E.

Theorem 4. There exists an extensive form game G and an outcome distribution of the game which can be achieved by an EFCE and by a QCE but not by any IR-EFCE.

Finally, we note that the normal form game from Appendix C (viewed as a depth-2 imperfect information extensive form game) provides an example of an outcome distribution that can be implemented by EFCE and by IR-EFCE but not by any QCE.

6 Further Work

6.1 Perfect Quantum Implementation of Classical CE

A potential application of QCE is to use quantum entanglement (and no classical communication) to remove the need for a trusted mediator when implementing a classical correlated equilibrium. While this might not always be possible (since some CE distributions might not have a corresponding QCE—see Appendix C), we have shown that for many classical CE distributions there indeed exists a QCE which induces the same distribution.\(^{16}\)

We now ask more precisely what it means for a mechanism to “implement” a classical CE. If we were to follow the viewpoint of Dodis, Halevi and Rabin [6], it would suffice to show that our mechanism has an equilibrium which is equivalent to the distribution of the desired correlated equilibrium. The framework of [6] matches closely with the analysis we have already performed, since we studied which correlated equilibria have a corresponding QCE with the same outcome distribution.

We can also take a more restrictive view of what it means for a mechanism to “implement” a desired correlated equilibrium, in a manner analogous to Izmalkov, Lepinski and Micali [14], [15].\(^{16}\)

\(^{16}\)As a trivial example, we can implement any CE in an n-player game for which one player has only a single possible move. See Section 4.1.
Izmalkov, Lepinski, and Micali defined the concept of “perfect implementation” of a mechanism. Roughly speaking, a perfect implementation preserves not only a single desired equilibrium, but it must preserve all of the strategic properties of the game as well as the privacy of the players. We do not wish to formally define perfect quantum implementation at this time, but we will give a rough outline of some of the properties it should obey.

For simplicity, we will only look at normal-form classical games, and we will continue to view the underlying game as a “black box” (avoiding the implementation issues from [14]). Let D be a classical CE distribution of the game G, and let A be the trusted classical mediator which suggests actions to the players according to D. We denote G^A to be the classical game where each player receives advice from A before deciding on his action. While we do not wish to formalize the notion at this point, we draw motivation from [15], and impose the requirement that, in order for $(|\psi\rangle, \Gamma, \bar{Q})$ to be a perfect quantum implementation of D, we must at the very least satisfy

- $(|\psi\rangle, \Gamma, \bar{Q})$ is a QCE with outcome distribution D.
- For each player i there is a mapping f_i from quantum circuits Q_i to strategies in G^A such that, if $(|\psi\rangle, \Gamma, (Q_1, \ldots, Q_n))$ is a QCE with distribution D', then the set of strategies $(f_1(Q_1), \ldots, f_n(Q_n))$ is an equilibrium of G^A with outcome distribution D'.

We should also enhance our definition to require that (if the game has more than two players) properties such as collusion-resilience of G^A are preserved in our perfect quantum implementation. For example, if two players in $(|\psi\rangle, \Gamma, \bar{Q})$ could collude (perhaps by performing a quantum operation which acts on both of their qubits) then a similar collusion should be possible in G^A.

The main idea is that a perfect quantum implementation not only achieves D in QCE, but does
not introduce any additional equilibria which would not already exist if the players were given the classical mediator A.\footnote{Since we do not introduce any communication between players in our quantum setting, we do not have to deal with issues of “aborting” computations as in [14] and [15].}

Achieving a perfect quantum implementation of a classical CE seems to be a much loftier goal than matching a single desired distribution in equilibrium, and we suspect that in most cases will be impossible. While in some very simple examples we are able to achieve such a perfect implementation, it remains a further question to study to what extent we can achieve a perfect (or some reasonably-defined approximation of perfect) quantum implementation of a classical CE.

6.2 Other Open Questions

1. What is the computational complexity of computing a QCE in a normal form game? In an extensive form game?

2. Given an outcome distribution of a classical game which can be achieved by a QCE, is there an efficient method of computing the smallest number of entangled qubits that must be shared in order to achieve this outcome distribution in QCE? If the game is a normal form game, is there an efficient method of determining the smallest number of qubits needed in a shared state which achieves the outcome distribution in a canonical implementation QCE?

3. In our model for QCE, the players are allowed to initially share an arbitrary pure quantum state. Which QCE outcome distributions are possible if we only allow the players to initially share an arbitrary number of EPR pairs?\footnote{Using EPR pairs, it is possible for two players to construct an arbitrary shared entangled state using only local operations and classical communication. (See [2].) However, this approach is unsatisfactory in our framework for a two-player game, since it requires classical communication (which changes the underlying classical game) and this protocol is not robust against a dishonest opponent. Notice that if a state $|\psi\rangle$ can be constructed (in an honest setting) by only local operations (with no communication) starting from shared EPR pairs, and if $|\psi\rangle$ can be used in a QCE, then the overall construction will be a QCE, regardless of the robustness of the state-constructing protocol. This follows from reversibility properties of quantum mechanics.}

7 Acknowledgements

I would like to thank Scott Aaronson and Silvio Micali for their advice and for many helpful discussions.

References

A Normal Form Correlated Equilibrium

In a Nash equilibrium of a normal form game, each player selects a probability distribution over his possible moves, and the resulting distribution on outcomes is the resulting product distribution. In a correlated equilibrium, however, a correlating device is used to correlate the random choices made by each player, therefore allowing for a wider variety of outcome distributions.

We consider a canonical representation of correlated equilibria, in which a correlating device suggests a single move to each player. (In a more general framework, the correlating device can provide arbitrary signals, although these two models are equivalent.) The resulting play is a CE if it is optimal for each player to always follow his advice, given that all other players follow their advice.

For example, consider the game in Figure 5. We claim that there exists a CE having outcome distribution \(\frac{1}{3}(TR + BL + BR) \). Imagine the correlating device taking three envelopes with contents \(TR, BL, \) and \(BR \), choosing an envelope at random, and secretly telling each player his recommended move. For this to be a correlated equilibrium, we must show that each player maximizes his expected utility by always following his advice, given that his opponents always follow their advice. For example, suppose that the column player always follows his advice. If the row player receives advice \(T \), then he knows that the column player must have received advice \(R \), and therefore the row player maximizes his utility by following his suggestion and playing \(T \). If the row player instead receives advice \(B \), then he knows that, conditional on his advice, his opponent will be playing \(L \) half the time and \(R \) half the time. His expected utility of playing \(T \) is therefore 3.5, while his expected utility of \(B \) is 5. Therefore the row player maximizes his expected utility by playing \(B \). An analogous argument shows that, if the row player always follows his advice, then it is optimal for the column player to follow his advice as well.

Notice that the presence of a trusted correlated device is vital to achieve the equilibrium distribution \(\frac{1}{3}(TR + BL + BR) \) in Figure 5. In particular, we cannot achieve this distribution using only a public random string. The underlying reason is that each player must not be able to know the opponent’s advice. If, for example, the row player received advice \(B \) and could compute with certainty whether the column player had received advice \(L \) or \(R \), then he could increase his expected utility by playing \(T \) whenever the column player received \(R \).

B Comparison of Classical Correlated Equilibria

We state a few results concerning the power of various classical correlated equilibrium concepts. The arguments given below are informal. When we compare equilibrium concepts, we are concerned
primarily with the induced outcome distribution reached in each equilibrium.19

Claim 1. In any extensive form game, any IR-EFCE has an equivalent EFCE. However, it is not necessarily the case that every EFCE has an equivalent IR-EFCE.

Proof. We argue informally that the above claim is true by noting that at any information set in an IR-EFCE, every player knows at least as much as he would know in the corresponding EFCE, and he also knows additional information about the advice he will receive at later information sets. Therefore, if it is never in the player’s interest to deviate even if he knows all of the information from the IR-EFCE, it will clearly be impossible for him to increase his expected utility by deviating if he knows even less about the future.

For the reverse direction of the claim, consider the game in Figure 3. It is easy to check that the outcome distribution \(1/2(IN, a, L) + 1/2(IN, b, R)\) is achievable by an EFCE. However, there is no IR-EFCE achieving this distribution. The reason is that, in the IR-EFCE framework, if player 1 receives advice \(IN\), he can check immediately whether his advice for his second move will be \(L\) or \(R\). If his advice will be \(R\), he can improve his utility by deviating and playing \(OUT\). Notice the EFCE framework, the player does not know if his advice will be \(L\) or \(R\) until after he plays \(IN\), and therefore he simply computes that his expected utility of playing \(IN\) is 51 which is greater than the utility of 3 he receives by playing \(OUT\).

For any extensive form game \(G\), there is a corresponding normal form game, which we will denote \(n(G)\) and call the normal form equivalent of \(G\). The players of \(n(G)\) are the same as the players of \(G\), and a pure strategy of player \(i\) in \(n(G)\) corresponds to a choice of a single move from all of \(i\)'s information sets in \(G\). (Note that the size of the game matrix for \(n(G)\) might be exponentially larger than the size of the game tree representation of \(G\).) We define the payoffs of \(n(G)\) according to the corresponding outcome of \(G\). We say that an outcome distribution \(D\) of \(G\) corresponds to an outcome distribution \(D'\) of \(n(G)\) if the probability of any outcome \(x\) of \(G\) under \(D\) is equal to the sum of the probabilities of all corresponding outcomes \(x_1, x_2, \ldots\) of \(n(G)\) under \(D\). (Notice that \(x\) may have several corresponding outcomes in \(n(G)\), since many moves in \(n(G)\) can differ only on information sets which are never reached in the path to \(x\) in \(G\)'s game tree.) We say that equilibria of \(G\) and \(n(G)\) are equivalent if their induced outcome distributions are equivalent.

Claim 2. Let \(G\) be an extensive form game. Then every IR-EFCE of \(G\) has an equivalent correlated equilibrium of \(n(G)\). Furthermore, every correlated equilibrium of \(n(G)\) has an equivalent IR-EFCE of \(G\).

The proof of Claim 2 follows easily from the definition of \(n(G)\).

C Normal Form CE with no Quantum Equivalent

In this Appendix, we study a particular CE in a normal form game and prove that no QCE achieves this outcome distribution. The game we analyze is presented in Figure 6.

This game has a classical correlated equilibrium \(\frac{1}{2}(TR + BL + BR)\) with expected utility 4 for each player. As shown earlier, this outcome distribution is not implemented in canonical QCE by the shared state \(\frac{1}{\sqrt{3}}(|01\rangle + |10\rangle + |11\rangle)\), since either player can measure in the Hadamard basis to improve his utility.

19Thus, an informal statement such as “an IR-EFCE has an equivalent EFCE” should be interpreted as meaning that there is an EFCE having the same induced outcome distribution as the IR-EFCE.
C.1 Density Matrix Constraints

In this section, we study the properties of any state $|\psi\rangle$ which implements the outcome distribution $\frac{1}{3}(TR + BL + BR)$ in a canonical QCE. We prove in Appendix C.2 that no such state $|\psi\rangle$ exists.

We first look at the mixed state of the row player conditional on the column player’s advice. Conditional on the column player having first qubit $|0\rangle$, we call the density matrix of the row player’s qubits ρ, and conditional on the column player’s first qubit being $|1\rangle$, we call the row player’s density matrix σ.

We know that when the column player has first qubit $|0\rangle$, the first qubit of the row player’s state must be $|1\rangle$ (since TL is never played in the equilibrium), while when the column player has first qubit $|1\rangle$, the row player must have equal probability of measuring $|0\rangle$ or $|1\rangle$ in his first qubit. Therefore, we can write

$$
\rho = \begin{bmatrix}
0 & 0 \\
0 & \tilde{\rho}
\end{bmatrix}; \quad \sigma = \begin{bmatrix}
\sigma_1 & \sigma_2 \\
\sigma_2 & \sigma_3
\end{bmatrix}
$$

where the first half of the diagonal entries (those which lie in the top-left quadrant) correspond to the row player’s first qubit being $|0\rangle$ and the second half of the diagonal entries (those in the bottom-right quadrant) correspond to the row player’s first qubit being $|1\rangle$. Since $|\psi\rangle$ implements the distribution $\frac{1}{3}(TR + BL + BR)$ in canonical QCE, we have $Tr(\tilde{\rho}) = 1$ and $Tr(\sigma_1) = Tr(\sigma_3) = 1/2$.

The goal of this section is to prove the following lemma:

Lemma 2. If $|\psi\rangle$ yields a canonical QCE implementation, then σ_2 is the zero matrix and $\sigma_3 = \frac{1}{2}\tilde{\rho}$.

Intuitively, the row player maximizes his utility by trying to determine if he’s been given σ instead of ρ. In particular, the row player can improve his utility by deviating if and only if he can correctly identify, with overall success probability strictly greater than $2/3$, whether he is given ρ (which occurs with probability $1/3$) or σ (which occurs with probability $2/3$).

We now suppose that $|\psi\rangle$ indeed implements a QCE. We first claim that $\sigma_3 = \frac{1}{2}\tilde{\rho}$. In particular, if $\sigma_3 \neq \frac{1}{2}\tilde{\rho}$, then we could perform the following test Q:

- Measure the first qubit in the standard basis. If this qubit is $|0\rangle$, output 0 and halt. If this qubit is $|1\rangle$, continue.

- Since $2\sigma_3 \neq \tilde{\rho}$, there exists a quantum circuit Q' acting on the remaining qubits such that

$$
P[Q'(2\sigma_3) = 0] > P[Q'(\tilde{\rho}) = 0].$$

Recall that if this distribution can be implemented by a QCE, then it has a canonical QCE implementation, so it suffices to prove that there is no canonical QCE.
Simulate this circuit on the remaining qubits, and output the result.

We notice that if the input state were σ and the result of measuring the first qubit was 1, then the resulting state (ignoring the first qubit) would indeed be 2σ. Since the row player’s overall goal is to output 1 when given ρ and to output 0 when given σ, we compute that the overall success probability (when given input ρ with probability $1/3$ and σ with probability $2/3$) is

$$\frac{2}{3} Tr(\sigma_1) + \frac{2}{3} \left(P[Q'(2\sigma_3) = 0] + P[Q'(\tilde{\rho}) = 1] \right) = \frac{1}{3} + \frac{2}{3} \left(1 + P[Q'(2\sigma_3) = 0] - P[Q'(\tilde{\rho}) = 0] \right) > 2/3.$$

Therefore, the row player can improve his utility by applying the test Q.

Our next goal is to show that σ_2 must be the 0 matrix. To do this, we consider the experiment where we are given mixed state σ with probability $\eta_1 = 2/3$ and state ρ with probability $\eta_2 = 1/3$. We have a quantum measurement circuit Q which is supposed to output 0 when given σ and 1 when given ρ. We define the error probability of Q to be

$$P_E(Q) = \eta_1 P[Q(\sigma) = 1] + \eta_2 P[Q(\rho) = 0]$$

We define the minimum error probability to be

$$P_E^{\text{min}} = \min_Q P_E(Q)$$

We now use a result of Helstrom [10], as mentioned in [11], which states that

$$P_E^{\text{min}} = \frac{1}{2} (1 - Tr|\eta_2 \rho - \eta_1 \sigma|),$$

where $|\tau| = \sqrt{\tau^\dagger \tau}$. As before, the row player has incentive to deviate if and only if $P_E^{\text{min}} < 1/3$, or equivalently if

$$Tr|\frac{1}{3} \rho - \frac{2}{3} \sigma| > \frac{1}{3}.$$

We now notice that

$$Tr|\frac{1}{3} \rho - \frac{2}{3} \sigma| = Tr|\frac{2}{3} \sigma - \frac{1}{3} \rho| = Tr\left| \begin{bmatrix} \frac{1}{3} \sigma_1 & \frac{2}{3} \sigma_2 \\ \frac{2}{3} \sigma_2 & 0 \end{bmatrix} \right|$$

Therefore, the row player has incentive to deviate if an only if

$$Tr \left| \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} \begin{bmatrix} \sigma_2 \\ 0 \end{bmatrix} \right| > \frac{1}{2}.$$

Since the trace of the absolute value of a matrix equals the sum of its singular values, we can write the above condition as

$$\sum_i |\lambda_i| \left(\begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} \begin{bmatrix} \sigma_2 \\ 0 \end{bmatrix} \right) > \frac{1}{2}.$$

Since we know that

$$\sum_i \lambda_i \left(\begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} \begin{bmatrix} \sigma_2 \\ 0 \end{bmatrix} \right) = Tr(\sigma_1) = \frac{1}{2},$$

the row player has incentive to deviate if and only if the matrix $M = \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} \begin{bmatrix} \sigma_2 \\ 0 \end{bmatrix}$ has a negative eigenvalue. We claim that this occurs if and only if σ_2 is non-zero.
If $\sigma_2 = 0$, then clearly the nonzero eigenvalues of M are equal to the nonzero eigenvalues of σ_1 (a positive semi-definite matrix). Therefore, if $\sigma_2 = 0$, the row player has no incentive to deviate.

Suppose now that σ_2 is non-zero. Then there exists some index (i, j) into the top-right block of M such that $M_{(i,j)}$ is non-zero. It follows from our indexing that (i, i) is an index into the top-left block of M, (j, i) is an index into the bottom-left block, and (j, j) is an index into the bottom-right block.

To show that M has a negative eigenvalue, we will show that M is not positive semi-definite. Consider the 2×2 principal minor of M given by the matrix

$$A = \begin{bmatrix} M_{(i,i)} & M_{(i,j)} \\ M_{(j,i)} & M_{(j,j)} \end{bmatrix}.$$

We now compute

$$\det(A) = M_{(i,i)}M_{(j,j)} - M_{(i,j)}M_{(j,i)} = M_{(i,i)} \cdot 0 - M_{(i,j)} \cdot M_{(i,j)}^* < 0.$$

Since A has a principal minor with negative determinant, we conclude that M has a negative eigenvalue, as desired.

In summary, we have shown that the row player has incentive to deviate unless

$$\sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \frac{1}{2}\rho \end{bmatrix}.$$

We can derive analogous constraints on the density matrices by looking at when the column player has incentive to deviate.

C.2 Impossibility of Satisfying Density Constraints

Suppose that quantum state $|\psi\rangle$ is a canonical QCE implementation of the desired outcome distribution. We write

$$|\psi\rangle = \sum_{x \in \{0,1\}^{n-1}} a_{xy} |0x\rangle |1y\rangle + \sum_{x \in \{0,1\}^{n-1}} b_{xy} |1x\rangle |0y\rangle + \sum_{x \in \{0,1\}^{m-1}} c_{xy} |1x\rangle |1y\rangle.$$

Following our analysis from Appendix C.1, we will study the density matrices

$$\rho = 3 \sum_y \sum_{x,x'} b_{xy} b_{x'y}^* |1x\rangle \langle 1x'|$$

$$\sigma = \frac{3}{2} \left(\sum_y \sum_{x,x'} a_{xy} a_{x'y}^* |0x\rangle \langle 0x'| + a_{xy} c_{1x'y}^* |0x\rangle \langle 1x'| + c_{xy} a_{x'y}^* |1x\rangle \langle 0x'| \\
+ c_{xy} c_{x'y}^* |1x\rangle \langle 1x'| \right)$$

where the constants of 3 and $\frac{3}{2}$ come from normalizing the density matrix after we take the conditional probability.

We now apply Lemma 2 to observe that

$$\frac{3}{2} \sum_y \sum_{x,x'} a_{xy} c_{x'y}^* |0x\rangle \langle 1x'|$$

19
must be a matrix of entirely zeroes (corresponding to the top-right block of \(\sigma \)). Therefore, we have the constraint
\[
\forall x, x': \sum_y a_{xy} c_{x'y}^* = 0.
\]
Furthermore, by comparing the bottom-right blocks of \(\sigma \) and \(\rho \), we have the constraint
\[
\forall x, x': \sum_y b_{xy} b_{x'y}^* = \sum_y c_{xy} c_{x'y}^*.
\]
We now apply the result analogous to Lemma 2 for the column player. This yields the constraints
\[
\forall y, y': \sum_x a_{xy} a_{xy'}^* = \sum_x c_{xy} c_{xy'}^*.
\]
Finally, since \(|\psi\rangle \) implements our desired outcome distribution, we have
\[
\sum_{x,y} |a_{xy}|^2 = \sum_{x,y} |b_{xy}|^2 = \sum_{x,y} |c_{xy}|^2 = \frac{1}{3}.
\]
The state \(|\psi\rangle \) is a canonical QCE implementation of the desired outcome distribution if and only if all of the above conditions are satisfied.

We claim that the above set of equations has no solution. Define the matrices \(A, B, \) and \(C \), where \(A_{ij} = a_{ij}, B_{ij} = b_{ij}, \) and \(C_{ij} = c_{ij} \). We rewrite the above constraints as:
\[
\text{Tr}(AA^\dagger) = \text{Tr}(BB^\dagger) = \text{Tr}(CC^\dagger) = \frac{1}{3},
\]
\[
AC^\dagger = 0,
\]
\[
B^\dagger C = 0,
\]
\[
BB^\dagger = CC^\dagger,
\]
\[
A^\dagger A = C^\dagger C.
\]
We now compute
\[
(CC^\dagger)(CC^\dagger) = C(C^\dagger C)C^\dagger = C(A^\dagger A)C^\dagger = (CA^\dagger)(AC^\dagger) = 0.
\]
We claim that the above equation implies that \(CC^\dagger = 0 \). Indeed, let \(v \) be an eigenvector of the hermitian matrix \(CC^\dagger \) with eigenvalue \(\lambda \). We now compute
\[
v^T(CC^\dagger)(CC^\dagger)v = v^T(CC^\dagger)v \cdot \lambda = \lambda^2 v^T v = 0
\]
and thus \(\lambda = 0 \). Since \(v \) was an arbitrary eigenvector, we conclude that \(CC^\dagger \) is the all-zero matrix. But this contradicts the fact that \(\text{Tr}(CC^\dagger) = 1/3 \).

Therefore, there does not exist a state \(|\psi\rangle \) satisfying the density matrix conditions of Appendix C.1, and thus there is no QCE achieving the outcome distribution \(\frac{1}{3}(TR + BL + BR) \).
To prove Theorems 2 and 4, we use a complete information version of the GHZ game from [9]. The standard incomplete information GHZ game has three players: Alice, Bob, and Charlie. They are given input bits a, b, and c respectively, with the promise that $a + b + c = 0 \pmod{2}$. The players output bits x, y, and z respectively, and they win if $x + y + z \pmod{2} = a \lor b \lor c$.

It is straightforward to show that no classical strategy allows the three players to win with certainty. However, if they share an entangled state, then they can always win. In particular, suppose that they share the state

$$|\psi_{GHZ}\rangle = \frac{1}{2} (|000\rangle - |011\rangle - |101\rangle - |110\rangle),$$

where the first bit belongs to Alice, the second bit to Bob, and the third bit to Charlie. It is easy to check that the players always win if they all use the quantum protocol “Apply a Hadamard transformation to your qubit if and only if your input bit is 1. Then measure your qubit in the standard basis and play the result.”

We now consider a “complete information GHZ game” (denoted cGHZ) which has four players: Alice, Bob, Charlie, and Nate. In the cGHZ game, Nate (who takes the role of “nature”) moves first and has four possible moves (corresponding to each assignment of bits a, b, and c such that $a + b + c = 0 \pmod{2}$.) Alice, Bob, and Charlie then move in turn, where each of these players can only distinguish between information sets based on their own input bit value. Each of these players has two possible moves (corresponding to the value they choose for their output bit) and we give each of Alice, Bob, and Charlie payoff 1 if their moves correspond to a winning outcome of the GHZ game, and payoff 0 otherwise. We give Nate a payoff equal to 1 minus Alice’s payoff.

It is clear that there is no EFCE or IR-EFCE in which Alice, Bob, and Charlie have expected utility 1. (In particular, Nate can always guarantee himself non-zero expected utility by mixing randomly between his four actions.) In both of these equilibrium concepts, the advice at each information set is determined before the game begins, and for any fixed set of advice, Nate could get non-zero expected utility by mixing.

However, consider the QCE in which Alice, Bob, and Charlie share the state $|\psi_{GHZ}\rangle$ as before (where Nate holds none of the qubits from $|\psi_{GHZ}\rangle$), where Nate mixes uniformly between his 4 actions, and where the other three players act according to the winning strategy of the GHZ game. It is clear that this is a QCE: Nate cannot improve his utility by deviating, since Alice, Bob, and Charlie win regardless of Nate’s move. The other three players have no incentive to deviate, since their expected utility of 1 is maximal. Since the outcome distribution of this QCE has expected utility 1 for Alice, Bob, and Charlie, there is no EFCE or IR-EFCE achieving this distribution. This completes the proof of Theorem 2.

We will now prove Theorem 4 by showing an extensive form game G and outcome distribution D which can be achieved by a QCE and by an EFCE but not by any IR-EFCE. The game G is a five-player game combining aspects of the cGHZ game with the game from Figure 3. We construct this game by beginning with the structure from Figure 3, and leave the IN branch unchanged. (We give players 3, 4, and 5 payoffs of 0 in the outcomes $(IN, a, L), (IN, a, R), (IN, b, L)$, and (IN, b, R).) In the OUT branch, however, instead of having payoff $(3, 3)$, we have a version of cGHZ game, where player 1 takes the role of Nate and players 3, 4, and 5 have the roles of Alice, Bob, and Charlie. (Player 2 gets no moves in this branch of the tree, and receives payoff 0 in all of the outcomes.) In
this version of the cGHZ game, players 3, 4, and 5 get payoff 1 if they succeed and player 1 gets payoff 0. If players 3, 4, and 5 fail in the cGHZ game, then they get 0 payoff while player 1 gets payoff 50.

Consider the outcome distribution $D = 1/2(IN, a, L) + 1/2(IN, b, R)$. I claim that D can be achieved by a QCE and by an EFCE but not by any IR-EFCE. First, we'll show that there is a QCE with outcome distribution D. Consider the QCE where players 3, 4, and 5 share the entangled state $|\psi_{GHZ}\rangle$ (and they are instructed to use the appropriate circuits from the GHZ protocol) and players 1 and 2 share the state $\frac{1}{\sqrt{2}}(|0\rangle |0\rangle + |1\rangle |1\rangle)$. We instruct player 1 to play IN, and then in his next information set to measure his qubit in the standard basis. Player 2 is instructed (if he has the opportunity to move) to measure his qubit in the standard basis and to play the corresponding move.

If everyone follows their prescribed protocol, then it is clear that the resulting outcome distribution is indeed D. I now claim that no player can benefit by deviating. In particular, players 3, 4, and 5 never have the opportunity to move (since player 1 is playing IN) and thus have no incentive to deviate. Player 1 realizes that, if he were to play OUT instead of IN, that he would receive payoff 0 (since players 3, 4, and 5 will always win the cGHZ game), and thus he will indeed play IN. Once he plays IN, it is in his interest for his next action to coordinate with player 2. Similarly, it is obvious that player 2 has no incentive to deviate.

Furthermore, it is clear that D can be achieved by an EFCE. The key point is that player 1’s expected utility of following his advice and playing IN in his first information set is 51, while he can never get utility more than 50 by playing OUT. The remainder of the argument is analogous to the argument above.

We finally claim that there is no IR-EFCE achieving distribution D. The reason is that player 1 can obtain expected utility at least $\frac{50}{4} > 2$ by playing IN and then mixing randomly between his four available actions in the cGHZ game. Therefore, if he sees that his later advice will be R, he can improve his utility immediately by deviating and playing OUT.

22